
Internet of Things
NodeMCU as Web Server

IoT Team, BFCAI

NodeMCU ESP8266

▪ NodeMCU is a low-cost open-source IoT platform based on the ESP8266

Wi-Fi system on a chip.

▪ NodeMCU runs on the ESP-12 module.

Web Server

Client Server

HTTP Request

HTTP Response

Web Server

▪ A web server is a place where web pages are stored.

▪ A web client is just a web browser that we use on our computers.

▪ A web client and a web server communicate using a special protocol

known as Hypertext Transfer Protocol (HTTP).

▪ In this protocol, a client sending an HTTP request for a specific web page.

▪ The server then sends back the content of that web page or an error

message if it can’t find it (like the famous 404 Error).

NodeMCU as HTTP Server using Wi-Fi AP Mode

▪ NodeMCU Wi-Fi has Access Point (AP) mode through which it can create

wireless LAN to which any Wi-Fi enabled device can connect.

NodeMCU as HTTP Server using Wi-Fi STA Mode

▪ NodeMCU has Station (STA) mode using which it can connect to the

existing Wi-Fi network and can act as a server with an IP address assigned

by that network.

NodeMCU as Web Server

▪ We want to build a simple webpage to turn on/off an LED and display the

temperature value.

NodeMCU as Web Server: Connecting to Wi-Fi

▪ When the NodeMCU is connected to a network, it gets an IP address.

▪ With this IP address, it can act as an HTTP server.

NodeMCU as Web Server: Simple Idea

▪ When the user enters 192.168.137.88/led/on, the LED turns on.

▪ When the user enters 192.168.137.88/led/off, the LED turns off.

192.168.137.88/led/on 192.168.137.88/led/off

NodeMCU as Web Server: Web Page

<!DOCTYPE html>
<html>
<head>
 <title>NodeMCU Web Server</title>
</head>

<body>
 <div>
 <h1>NodeMCU Web Server</h1>
 Turn On LED
 Turn Off LED
 <div>Temperature: #temp#</div>
 </div>
</body>
</html>

NodeMCU as Web Server: Web Page

NodeMCU as Web Server: Better Look

<!DOCTYPE html>
<html>
<head>
 <title>NodeMCU Web Server</title>
 <style>
 body {
 font-family: Arial;
 background-color: #f2f2f2;
 margin: 0;
 display: flex;
 justify-content: center;
 align-items: center;
 height: 100vh;
 }
 .container {
 text-align: center;
 padding: 20px;
 border-radius: 8px;
 background-color: #fff;
 box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
 }
 .btn {
 display: inline-block;
 padding: 10px 15px;
 font-size: 18px;
 border: none;
 border-radius: 4px;
 cursor: pointer;
 margin: 10px;
 text-decoration: none;
 }

NodeMCU as Web Server: Better Look

 .btn-on {
 background-color: lightseagreen;
 color: white;
 }
 .btn-off {
 background-color: tomato;
 color: white;
 }
 .temp {
 font-size: 24px;
 margin-top: 20px;
 }
 </style>
</head>

<body>
 <div class="container">
 <h1>NodeMCU Web Server</h1>
 Turn On LED
 Turn Off LED
 <div class="temp">Temperature: #temp#</div>
 </div>
</body>
</html>

NodeMCU as Web Server: Better Look

NodeMCU Pinout

PIN GPIO Why Not Safe?

D0 GPIO16
HIGH at boot

Used to wake up from deep sleep

D1 GPIO5 -

D2 GPIO4 -

D3 GPIO0
Connected to FLASH button

Boot fails if pulled LOW

D4 GPIO2
HIGH at boot

Boot fails if pulled LOW

D5 GPIO14 -

D6 GPIO12 -

D7 GPIO13 -

D8 GPIO15
Required for boot

Boot fails if pulled HIGH

Controlling an LED: Circuit

Controlling an LED: Code Notes

▪ The ESP8266WiFi.h library is for handling Wi-Fi connectivity.

#include <ESP8266WiFi.h>

▪ The ESP8266WebServer.h library is for creating a web server.

#include <ESP8266WebServer.h>

▪ We will define the pin connected to the LED as D6.

#define LED_PIN D6

▪ Setting the Wi-Fi network SSID and password.

const char* WIFI_SSID = "iotlab";
const char* WIFI_PASS = "hostiotlab";

▪ The variable ledStatus is used to keep track of the LED status (1 or 0).

bool ledStatus = LOW;

Controlling an LED: Code Notes

▪ An instance of the ESP8266WebServer class named server is created,

listening on port 80 for incoming HTTP requests.

ESP8266WebServer server(80);

Port Protocol

20, 21 FTP

22 SSH

23 Telnet

25 SMTP

53 DNS

80 HTTP

443 HTTPS

Controlling an LED: Code Notes

▪ Serial communication is initiated at a baud rate of 115200 to enable

communication with the computer for debugging purposes.

Serial.begin(115200);

▪ The pin connected to the LED is configured as an output.

pinMode(LED_PIN, OUTPUT);

▪ The device attempts to connect to the specified Wi-Fi network using the

provided SSID and password.

WiFi.begin(WIFI_SSID, WIFI_PASS);

▪ During this process, the program waits until the Wi-Fi connection is

established. Once connected, it prints the device’s IP address.

Controlling an LED: Code Notes

▪ HTTP request handlers are defined to specify how the server should

respond to different requests, such as turning the LED on or off.

server.on("/", handleRoot);

server.on("/led/on", handleLedOn);
server.on("/led/off", handleLedOff);

server.onNotFound(handleNotFound);

▪ Finally, the HTTP server is started, allowing the NodeMCU to handle

incoming HTTP requests.

server.begin();

Controlling an LED: Code Notes

▪ In the loop() function, the NodeMCU continuously checks for

incoming client requests using the server.handleClient() function.

▪ This function is responsible for processing any incoming HTTP requests

and generating appropriate responses.

void loop() {
 // Handle incoming client requests
 server.handleClient();
}

Controlling an LED: Code Notes

▪ The handleRoot() function serves as the HTTP request handler for the

root URL ("/").

▪ The digitalWrite() function is used to control the state of the LED

pin, setting it either HIGH or LOW to turn the LED on or off.

digitalWrite(LED_PIN, ledStatus);

▪ After updating the LED status, an HTML response is sent back to the

client using the server.send() function.

server.send(200, "text/html", getHtml());

▪ The response has a status code of 200, indicating success.

▪ The HTML content to be sent is obtained by calling the getHtml()

function, which generates the appropriate HTML.

Controlling an LED: Code Notes

▪ The handleLedOn() function serves as the HTTP request handler for

turning the LED on.

▪ The ledStatus is updated to HIGH, indicating that LED will be turned on.

ledStatus = HIGH;

digitalWrite(LED_PIN, ledStatus);

▪ An HTML response is sent back to the client using server.send().

server.send(200, "text/html", getHtml());

▪ The response has a status code of 200, indicating success.

▪ The HTML content to be sent is obtained by calling the getHtml()

function, which generates the appropriate HTML.

Controlling an LED: Code Notes

▪ The handleLedOff() function serves as the HTTP request handler for

turning the LED off.

▪ The ledStatus is updated to LOW, indicating that LED will be turned off.

ledStatus = LOW;

digitalWrite(LED_PIN, ledStatus);

▪ An HTML response is sent back to the client using server.send().

server.send(200, "text/html", getHtml());

▪ The response has a status code of 200, indicating success.

▪ The HTML content to be sent is obtained by calling the getHtml()

function, which generates the appropriate HTML.

Controlling an LED: Code Notes

▪ In the handleNotFound() function, which is the HTTP request handler

for when a requested URL is not found, the server sends a 404 Not Found

response to the client.

▪ This response indicates that the requested resource could not be found on

the server.

void handleNotFound(){

 // Send a 404 Not Found response

 server.send(404, "text/plain", "Not Found");

}

Controlling an LED: Code Notes

▪ The getHtml() function generates and returns the HTML content for

the web page served by the NodeMCU web server.

▪ Clicking <a> links triggers the /led/on or /led/off routes.

Turn On LED

Turn Off LED

▪ The temperature value is represented by #temp#, which suggests that it’s

needs to be replaced with the actual temperature value dynamically before

sending the HTML response to the client.

<div class="temp">Temperature: #temp#</div>

Controlling an LED: Accessing Website

▪ In Wi-Fi Station (STA) mode, NodeMCU gets IP address from the router

(access point).

▪ If we are also in the same network, then we can directly connect to

NodeMCU HTTP server using the IP address only.

Controlling an LED and Reading Temperature: Circuit

Controlling an LED and Reading Temperature: Code Notes

▪ The directive includes the DHT sensor library, which provides functions

for interfacing with DHT sensors.

#include "DHT.h"

▪ This line defines the pin connected to the DHT sensor, which is D5.

#define DHT_PIN D5

▪ This initializes a DHT11 sensor object named dht.

DHT dht(DHT_PIN, DHT11);

▪ This declares a variable to store the temperature read from DHT sensor.

float temp;

▪ This line starts the DHT sensor, allowing it to begin reading data.

dht.begin();

Controlling an LED and Reading Temperature: Code Notes

▪ Inside the handleRoot(), handleLedOn(), and handleLedOff() functions,

the temperature is updated.

temp = dht.readTemperature();

▪ In the getHtml() function, the #temp# placeholder in the HTML

content is replaced with the actual temperature value.

htmlContent.replace("#temp#", String(temp));

Controlling an LED, Reading Temperature and Sending to Firebase: Circuit

Controlling an LED, Reading Temperature and Sending to Firebase: Notes

▪ This directive includes the FirebaseESP8266 library, which enables

integration with Firebase Realtime Database on the ESP8266 platform.

#include <FirebaseESP8266.h>

▪ This declares a FirebaseData object named fbdo, which is used to

interact with the Firebase database.

FirebaseData fbdo;

▪ This initializes the Firebase connection with the specified host and

authentication token.

Firebase.begin(FIREBASE_HOST, FIREBASE_AUTH);

Controlling an LED, Reading Temperature and Sending to Firebase: Notes

▪ This function is responsible for updating the temperature value in the

Firebase Realtime Database under the "/temp" path.

void updateFirebase(float temp){
 // Set temperature value in the Firebase under the
"/temp" path
 if(Firebase.setFloat(fbdo, "/temp", temp)){
 Serial.print("Temperature: ");
 Serial.println(temp);
 }
 else
 Serial.println(fbdo.errorReason());
}

Controlling an LED, Reading Temperature and Sending to Firebase: Notes

▪ Inside the handleRoot(), handleLedOn(), and handleLedOff()

functions, the updateFirebase(temp) function is called to update the

temperature value in Firebase each time the LED status is changed.

temp = dht.readTemperature();

updateFirebase(temp);

▪ The getHtml(float temp) function is modified to include the current

temperature value in the HTML content.

▪ The #temp# placeholder in the HTML content is replaced with the actual

temperature.

htmlContent.replace("#temp#", String(temp));

Controlling an LED, Reading Temperature and Sending to Firebase: Output

References

▪ HTTP Server on NodeMCU with Arduino IDE

▪ Create A Simple ESP8266 NodeMCU Web Server In Arduino IDE

▪ Build an ESP8266 Web Server - Code and Schematics (NodeMCU)

▪ ESP8266 NodeMCU Async Web Server

▪ ESP8266WebServer - GitHub

https://www.electronicwings.com/nodemcu/http-server-on-nodemcu-with-arduino-ide
https://lastminuteengineers.com/creating-esp8266-web-server-arduino-ide/
https://randomnerdtutorials.com/esp8266-web-server/
https://randomnerdtutorials.com/esp8266-nodemcu-async-web-server-espasyncwebserver-library/
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WebServer

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

